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A series of experimental observations is presented of a flow in which inertial os- 
cillations are excited. The homogeneous fluid is contained in a completely filled 
right circular cylinder. The cylinder is spun about its axis of symmetry and a small 
‘forced precession’ (or coning motion) is impulsively started. The flow is visualized 
by an electrolytic dyeline method. The mathematical problem for linear inviscid 
inertial oscillations in this system, although ill-posed in general, admits a solution 
in terms of wave modes for the specific boundary conditions considered here. The 
experiments show that while this linear inviscid theory provides some facility for 
predicting the flow structure at early times, the flow rapidly and irreversibly distorts 
away from the predicted form. This behaviour is seen as a precursor to some of the 
more dramatic breakdowns described by previous authors, and it may be pertinent 
to an understanding of the breakdowns reported in experiments on elliptical flow 
instabilities. 

1. Introduction 
In general, the system under consideration is homogeneous fluid completely filling 

a spinning container, and subjected to some form of external forcing. The specific 
fluid system studied in this paper is contained in a right circular cylinder spinning 
steadily about its axis of symmetry. The fluid was supposed to have attained solid- 
body rotation before the commencement of forcing, in which there is initially no fluid 
motion relative to the container walls. The forcing was due to a small ‘precession’ of 
the axis of spin: this axis itself rotated in inertial space to trace out the surface of a 
double cone. The apexes of these cones are together at the container centroid. 

For inertial oscillations in a cylindrical container, the dispersion relation giving the 
eigenfrequencies of linear inviscid normal modes was first derived by Kelvin (1 880) 
and its predictions for the eigenfrequencies were tested experimentally by Fultz (1959), 
McEwan (1970), Stergiopoulos & Aldridge (1982) and Manasseh (1992). 

McEwan (1970) measured the amplitude of the oscillations using a thermistor 
probe. He found reasonable agreement of the amplitude-cylinder-height spectrum 
with the linear inviscid theory, near the lowest-order mode he could force. To do this 
he had to include modes with radial wavenumbers up to 5 in the theoretical spectrum. 

‘f Current affiliation: School of Mathematics, University of New South Wales, P.O. Box 1, 
Kensington, NSW 2033, Australia 
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However, he found the resolution of the spectrum to be ‘poor’, responding essentially 
to the lowest-order mode that could be forced. 

Several experimental studies of rotating fluid systems in which inertial modes arise 
(for example Malkus 1968; McEwan 1970; and Manasseh 1992) have documented 
fluid flow breakdowns leading to turbulence. Manasseh (1992) described a system 
kinematically identical to the one in this paper, but made a wider and less detailed 
survey of the parameter space. Different breakdown regimes were catalogued by 
a letter scheme (A-G), where a Type A breakdown results in the generation of 
turbulence with the smallest scales. Manasseh (1992) described flow visualizations 
by means of a reflective flake technique that provided an excellent picture of the 
flow structure, but gave no information on fluid velocities. Quantitative data were 
extracted in the form of the times for the breakdowns to occur. The breakdown 
phenomena, while readily produced over a large region of parameter space, appeared 
to be complex and varied. 

The cause or causes of the breakdowns remain unclear. There is some experimental 
evidence of nonlinear interactions between inertial modes in a cylinder (Aldridge 
& Stergiopoulos 1991; Manasseh 1992). In Aldridge & Stergiopoulos (1991) a 
least-squares procedure was used to recover the time-dependent eigenfrequencies 
corresponding to freely decaying modes in a cylindrical cavity. The decay rates 
of some modes were found to vary with time. An interpretation of this has the 
mode amplitudes slowly oscillating with time, due to nonlinear interactions. In 
Manasseh (1992) visual observations, quantified by image-processing measurements, 
were made of higher-order modes than those directly forced. Normally, such evidence 
would prompt the use of a weakly nonlinear or low-order dynamical systems model, 
based on a low number of modes. However, the inertial modes in a cylinder 
cannot be conveniently grouped into resonant triads, owing to the nature of their 
dispersion relation, preventing a simple implementation of weakly nonlinear theory. 
Furthermore, it is only in a small region of parameter space that a low number of 
modes appears to be interacting. 

Some breakdown phenomena are associated with a mean flow taking the form 
of an azimuthal circulation relative to the container walls. The participation of an 
azimuthal circulation in resonant collapse was suggested by both McEwan (1970) and 
Gunn & Aldridge (1990). Although linear inviscid theory predicts only oscillatory flow 
under oscillatory forcing, wave-mean flow interactions (see, for example, McIntyre 
& Norton 1990) occur when some dissipation and nonlinearity are permitted. An 
asymptotic analysis by Thompson (1970) predicted a small mean flow O(0) times 
the first-order forced response amplitude, where 0 is the small parameter used in the 
analysis. 

Recent interest in elliptical flow instabilities (Gledzer, Dolzhanskii & Obukhov 
1989; Malkus 1989; Waleffe 1990; Malkus & Waleffe 1991; Gledzer & Ponomarev 
1992; Kerswell 1993) has broadened the relevance of the inertia wave breakdown 
phenomena. An inertia wave mode can be shown (Waleffe 1990) to be the fastest 
growing unstable mode in the instability of an elliptical flow. It was suggested by 
Malkus & Waleffe (1991) that the subsequent breakdown of the inertial mode is a 
‘ubiquitous source of turbulence which by-passes lesser chaotic phases’. 

A practical application lies in the control of spinning spacecraft carrying liquid 
fuels, for which inertial oscillations and their prevention are of current research 
interest (Scott & Tan 1993; Manasseh 1993). 

The first and main objective of the experiments reported here was to gain further 
insight into the flows reported in McEwan (1970) and Manasseh (1992), by using a 
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different flow visualization technique that provides some information on the magnitude 
of velocity in the flow. A specific aim was to determine if the dyeline pattern before 
breakdown corresponded to that predicted by linear inviscid theory. The experiments 
were to be conducted near the resonances of low-order modes, so that relatively 
simple structures should develop for easy comparison with theory. The single low- 
order mode closest to resonance was expected to dominate the flow - although other, 
high-order, modes would have resonances nearby owing to the unusual nature of 
the dispersion relation, these would be damped by viscosity. This paper is restricted 
to describing the experiments near the lowest-order mode that could be forced: the 
'fundamental' mode. A second objective, which was only partly met, was to determine 
if an azimuthal circulation was a significant participant in the breakdown of the flow. 

The linear inviscid theory is presented in 52 in outline form only, since it has already 
been detailed in Manasseh (1992). The experimental techniques are described $3 and 
a guide to interpreting the experimental results is in $4. A description of a calculation 
used to compare the predictions of linear inviscid theory with the early stages of the 
experiments is in $5, while the actual experimental results are in $6. 

2. Linear inviscid theory 
Referring to figure 1, which defines some basic parameters, consider a general 

fluid-filled container spinning about an axis through its centroid and precessing about 
a second axis through its centroid. Assume the centroid is not accelerating in inertial 
space, and the angle between the two axes is not varying with time. In rotating fluid 
dynamics problems one typically chooses the basic rotation period of the fluid relative 
to inertial space as the timescale; in our problem this is Q-' = I(w1k + w&)\-l. Here, 
however, we will choose the timescale to be w1-l. In making this choice of timescale, 
we are anticipating observing experiments from a frame of reference in which periods 
of 2x /w l  are easily counted to provide a timescale with which various events can be 
measured. In fact, in the experiments to be described later, 271/01 is the rotation 
period of the tank relative to the observing cameras. The lengthscale D is equal to the 
container diameter. The cylinder length/diameter aspect ratio is h. We assume that 
the nutation angle 6' between the two axes is small, and assuming that the velocity 
scale U = O(wlD6') allows linearization of the problem. The dimensional pressure is 
pwlUDp, where p is the dynamic pressure in excess of the centrifugal pressure that 
plays no dynamical role in this problem. The non-dimensional excitation frequency 
w is defined as twice the ratio of the basic rotation rate R to first order in 8, to the 
frequency of the variation of the overall angular velocity vector in tank coordinates, 
01,  giving 

0 2  

a1 
0 = 2(1+ -). 

The incompressible inviscid linearized fluid equation of motion relative to axes 
fixed in the container is 

together with continuity, 

Equation (2.2) is the form of the momentum equation appropriate to our problem; 
v . u = o .  (2.3) 
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Gimbal 

FIGURE 1. Schematic drawing of the apparatus. 

steps in its derivation are outlined in Wood (1966). The boundary condition is 

u - i i = o ,  (2.4) 

where ii is the unit normal vector to the container surface. This allows a free-slip 
condition at the container wall consistent with the assumption of an inviscid flow. To 
effect the inviscid approximation, an Ekman number, defined by E = v/(colD2),  has 
been assumed to be negligibly small. The dimensional spin-up time is given by 

D 
t, = 

(w, + W 2 ) 4 V S ,  

Adopt cylindrical polar coordinates ( r ,  4, z )  fixed in the tank, with their origin at 
the cylinder centroid. Assuming a separable solution to the homogeneous version of 
(2.2), of form 

n=l 

n=l 

and eliminating the velocity components with the aid of the continuity equation, we 
get Poincarit's equation, 
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k 1  
1 1  
1 2  
1 3  
2 1  
2 2  
2 3  
3 1  
3 2  
3 3  

Wkll 
2.64298 
5.27757 
7.93621 
1.48403 
2.65374 
3.93395 
1.22370 
1.89134 
2.69398 

l k l l  
2.88221 
6.10489 
9.27678 
2.58361 
5.79180 
8.96470 
2.49274 
5.67380 
8.84105 

k 1  
4 1  
4 2  
4 3  
5 1  
5 2  
5 3  
6 1  
6 2  
6 3  

Wkll 
1.12769 
1.55603 
2.11440 
1.08229 
1.37830 
1.78975 
1.05736 
1.27306 
1.58812 

l k l l  
2.45622 
5.61787 
8.77909 
2.43833 
5.58728 
8.74335 
2.42833 
5.56886 
8.72081 

TABLE 1. Resonant excitation frequencies Wklm and radial wavenurnbers&, for a precessionally 
forced cylinder, h = 4/3 

a hyperbolic p.d.e. for lcol > 1. The associated boundary condition is 

U - A = O .  (2.9) 

In an unbounded domain (2.8) admits a set of plane-wave solutions, which are 
usually referred to in the literature as inertia waves. Although the full problem given 
by (2.8) and (2.9) is ill-posed, it is possible to find an analytic description of the flow 
in the case of the particular geometry of a right circular cylinder. 

For brevity, the index n is used to indicate a unique combination of the spatial 
wavenumbers k , l  and m. The integer k is the axial wavenumber and the integer 
m is the azimuthal wavenumber. As the radial wavenumber 1 is non-integer, it is 
convenient to use an integer index 1 to count the number of half-cycles in the radial 
direction. 

A solution to (2.8) and (2.9) by separation of variables is 

Qn = J,(21nr)cos(2(02 - 1)-5ln[z + h / 2 ] )  ek6 , (2.10) 

where J,,, is the Bessel function of the first kind, order m. A solution to Poincari's 
equation of this kind was first found by Kelvin (1880). 

Resonant excitation frequencies con correspond to eigenvalues of the system for this 
particular geometry and for precessional forcing, which requires modes with m = 1. 
Some of the lower-order on are tabulated in table 1 for the cylinder length / diameter 
ratio h of this experiment. 

Note that the on do not increase monotonically with increasing order of the 
wavenumber vector. The mn are densely spaced; for any con, it is possible to find 
another arbitrarily close. 

The velocity field u = Re C:=P=,(AnUn eit) that solves (2.2), is given by 

dJ1(2'nr) + LJ1(2E.,r) cos [ k n ( z / h  + i)] C O S ( ~  + t )  1 -1 [." dr r 

12 

k n  
-J1(2Anr) sin [ k n ( z / h  + k)] sin(4 + t )  
h 

(2.1 1) 
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and the pressure by 
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(2.12) 

The amplitudes A, are found by calculating the inner-product integral of the forcing 
function which is on the right-hand side of (2.2), using the spatial structure of the nth 
mode. The calculation of the A, is presented in the Appendix to this paper. 

In principle we could force all the linear inviscid modes, up to the order where the 
wavelength is comparable to the boundary-layer thickness. However, the modes that 
can be precessionally forced have rn = 1, as noted above. Furthermore, the forcing 
function, -(o - 2)(v cos(4 + t ) )& is even in z ,  so the modes upon which it will project 
must have a vertical velocity that is also even in z, requiring, from (2.11), an odd 
axial wavenumber k .  As in Manasseh (1992), low-order modes are those with a small 
wavenumber vector magnitude. 

3. Experimental apparatus, technique and procedure 
3.1. Apparatus and technique 

Full details of the apparatus and technique are in Manasseh (1991). Figure 1 is a 
schematic diagram of the apparatus which realized the precessing tank system. The 
Perspex tank is of internal diameter 90 mm and internal height 120 mm. It spins in a 
gimbal frame which is in turn mounted on a turntable. Here o.11 is the spin rate of the 
tank relative to the gimbal frame and the precession rate 0 2  is the spin rate of the 
turntable relative to the laboratory. The nutation angle 8 can be varied by tilting the 
gimbal frame from the vertical. For the experiments reported in this paper, the tank 
spin axis was precessed at a constant 8 which was small (1'). To do this, the system 
was first spun up to a desired combination of 01 and 012, with 8 = 0. Precession, and 
hence forcing, was initiated by an impulsive tilt of the gimbal frame to the preset 
value of 1'. The fluid was illuminated by a diffuse fluorescent light source and viewed 
by a video camera or a still camera fixed on the turntable. 

The experiments were performed at the Department of Applied Mathematics 
and Theoretical Physics (DAMTP) at Cambridge University. A DAMTP precision 
turntable was used; it is driven by a permanent magnet D.C. servomotor controlled 
by an analog loop, feedback being provided by an integral tachogenerator. The 
reference voltage is supplied by a BBC microcomputer with 16 bits resolution, which 
also controlled the experimental procedure for the experiments reported here. 

The thymol blue electrolytic dyeline technique (Baker 1966) utilizes the colour 
change of thymol blue indicator molecules in the presence of a local concentration of 
base ions. Thymol blue crystals are first dissolved in the fluid, which is distilled water. 
The fluid is then made into an appropriate electrolyte by the addition of acid and base 
solutions. This ambient fluid is orange-yellow in colour. If a low ( 5  to 1OV) potential 
is applied to the fluid by electrodes, H+ ions will collect at the cathode, forming a 
local deficit of OH- ions which react with the indicator molecules to form a dark 
blue dyed zone. If the applied voltage is switched off, the indicator will eventually 
revert to its original colour; the technique can thus be used continuously in a small 
fluid volume. In the meantime, fluid motion carries the dyed patch away from the 
cathode, permitting a visualization of the flow. 

A stainless steel wire of diameter 0.05 mm was used as the cathode. In the 
experiments reported in this paper, a single wire was used. It was mounted slant-wise 
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in the tank with the ends of the wire mounted on the flat endwalls of the cylinder 
at a radius of 12.5 mm. The anode was a single brass screw at one end of the 
tank at a radius of 12.5 mm. A slanting orientation was chosen so that both axial 
and horizontal velocities would cause a noticeable departure of dye from the wire. 
Trial estimations of fluid velocity, made as described in $6, gave fluid flows of order 
10 mm s-l relative to the wire, corresponding to a Reynolds number for the wire of 
about 0.5. Laminar vortex shedding from a cylinder does not begin until the Reynolds 
number reaches about 50. Thus, in respect of spurious oscillatory disturbances, the 
wire has a negligible influence on the flow. In the visualizations there was no evidence 
of vortices being shed from the wire. The possibility of other influences from the wire 
is discussed at the end of $6 and in $7. 

The experiments of McEwan (1970) and Manasseh (1992), which both used a 
reflective flake technique, reported difficulties in achieving solid-body rotation. In 
Manasseh (1992) a ‘bright column’ along the cylinder axis was noted, implying a 
relative shear in the fluid after several spin-up times had elapsed. The reflective 
flakes are aligned by any strain field above the level of that due to Brownian motion, 
irrespective of the magnitude of the velocities involved, and so the magnitude of the 
flow corresponding to the ‘bright column’ was uncertain. Initial tests using the thymol 
blue technique indicated that the bright column present before the commencement 
of forcing did in fact correspond to a small anticyclonic departure from solid-body 
rotation. This departure was called the ‘anomaly drift’ (Manasseh 1991). Careful 
calibrations were performed. (These included a study of the very slow ‘intrinsic’ 
drift of the dyeline in a motionless tank that was probably due to the asymmetry 
in the electric field.) Optimal settings were found that minimized the anomaly drift 
and rendered the intrinsic drift negligible. In Manasseh (1991) the anomaly drift 
was shown to be at most 1/100 of the forced flow velocity and it was ascribed to 
small irregularities in the container spin rate. It was inferred that the behaviour in a 
system free of anomaly drifts was unlikely to be different, given a forced flow velocity 
typically 100 times larger. 

3.2. Experimental procedure 
The procedure during the experiments reported in $6 was as follows: 

The tank was set spinning for about 2 hours. Tests had shown that the anomaly 
drift reduced to a stable value after about 2 hours. The tank spin rate co1 was 
stroboscopically checked and set using an analog controller. The tank was left 
spinning throughout the set of experimental runs. 

The procedure during each run was as follows: 
1. The tank spin and turntable axes were set to be collinear. The turntable was 

spun up to a speed calculated by the microcomputer. 
2. The theoretical spin-up time given by (2.5) was allowed to pass. 
3. An additional period elapsed to ensure that any flows from a previous run 

had dissipated. The total wait time was at least 100 revolutions of the tank in 
inertial space, about 4 spin-up times for experiments conducted near the (l,l ,l) mode 
resonant frequency. 
4. The video recorder began recording. The dyeline current was switched on for 

60 s, which was the optimum time determined by tests detailed in Manasseh (1991). 
5. The gimbal locking catch was released to initiate forcing. 
6. The turntable was spun down and the axes returned to collinear. 
There were 4 runs at the same parameter settings to ensure repeatability of the 

results. 
12-2 
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4. Predictions of linear inviscid theory 

We can deduce how the dyeline should appear from the turntable frame of refer- 
ence from which the video recordings were made and the photographs taken. The 
approximations of linearity and inviscid flow still hold. The dye particles, under 
the influence of forced inertia wave modes, should follow orbital paths relative to 
tank-fixed coordinates, just as particles in the ocean trace out orbital paths under 
the influence of surface gravity waves. The dye particles should rotate on their orbits 
with the forcing frequency -01 relative to tank-fixed coordinates, while the tank and 
wire fixed in it are rotating relative to the camera with the opposite frequency, 01. 
Figure 2 is an idealized diagram of this motion, near the tank ends where the motion 
is essentially normal to the axis. The ‘radius’ of the orbits (idealized as circular) 
will increase as the amplitude of the oscillation increases. As with any forced linear 
oscillator, the amplitude depends linearly on the forcing amplitude and inversely on 
the closeness to resonance. The wire that generated the dyeline is marked with a +. 
The dye particles will be initially displaced from the wire during the impulsive tilt-out 
that began the forcing. After this initial displacement (which will be a slight curve 
since 0.1 s is about 1/6 of a rotation period and the Coriolis force will have time 
to act) the particles will start to trace out an orbit with a radius appropriate to the 
forced amplitude. 

If the orbits were circular, and centred on the wire, the displacements of the dye 
particles from the wire, projected onto the plane viewed by the camera, would be 
perfectly constant, because the time dependence of their orbital motion is perfectly 
cancelled by that of the camera. However, even a circular orbit would not be centred 
on the wire. There are at least three reasons for this, under linear inviscid theory 
alone. Firstly, the forced-motion orbit’s ‘centre’ is not at the wire; as shown in 
figure 2, the steady orbital trajectory passes close to the wire since the particles start 
off there. Secondly, superimposed on the forced motion is the transient response, or 
free-mode ‘ringing’. whose amplitude depends only on the magnitude of the initial 
tilt-out. The free mode with the largest amplitude is the one with the spatial structure 
closest to the form of the initial disturbance, namely the (l , l , l)  mode. Thus this 
largest free mode response closely resembles the forced response in structure; also, it 
oscillates with a natural frequency which is close to the forcing frequency, because 
the ( l , l , l )  mode is being forced near resonance. Thirdly, as with the surface gravity 
wave paradigm, there is a ‘Stokes drift’ of the orbits. Because of the linear solution’s 
three-dimensional velocity field (sinusoidal and Bessel functions) a particle finds itself 
in a slightly different part of the velocity field on the completion of each orbit. (For 
simplicity, the free-modal response and ‘Stokes drift’ are not shown on figure 2.) 

Nevertheless, on the plane imaged by the camera fixed on the turntable, the 
displacement of the dyeline from on the wire should not appear to reverse sign in an 
oscillatory fashion. This is because, as noted above, the oscillatory time dependence 
of the dye particles in tank coordinates is precisely the same as that of the imaged 
plane; the camera in effect ‘follows’ the dye particles around on their orbits. 

The residual apparent motion of the dye particles relative to the wire on the imaged 
plane should be that due to the eccentricity of the orbit centres due to the initial 
displacement, the beating between the forced and free modes and the ‘Stokes drift’. 
All these influences, as well as the ‘radius’ of the orbit (which is steady once a steady 
forcing regime is established), are ultimately related to the forced mode amplitudes (or 
directly to the size of the initial tilt, upon which the forced mode amplitudes depend). 
Thus the distance, d(z), of the dyeline from the wire, projected onto an (r,z)-plane 
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FIGURE 2. Motion of dye particles under the influence of forced inertial modes. The diagram shows 
dye particle displacements A J z )  for a particular z ,  projected onto the plane imaged by the camera 
in the turntable or precessing frame of reference, from which the exposures (figure 5a-h) were 
taken. The tank, viewed from above, is rotating clockwise in this frame of reference. Orbits of the 
particles, shown for simplicity as circular, without the influence of free modes and neglecting Stokes 
drift, are drawn at eight positions relative to the turntable-fixed camera. The horizontal arrows 
show A, .  (a) View of particles near the top of the tank, which initially tilts away from the camera, 
thus the initial displacement (at position 1) relative to the wire is towards to camera; A,, is to the 
left. ( b )  View of particles near the bottom of the tank, which initially tilts towards the camera; the 
initial displacement (position 1, noting that base of the wire at the bottom is almost diametrically 
opposite its base at the top) is away from the camera; A ,  is to the right. 
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fixed in turntable coordinates (where it is called d p ( z ) )  will ultimately depend on 
C:=O=IAn, where A,  is the amplitude of each mode. However, the dependence will 
not be simple because of the complicating kinematic factors just mentioned. Near 
resonance of a low-order mode, that mode should dominate the sum. It is possible to 
estimate d(z) from d p ( z ) ,  and hence get a measure characteristic of what we presume 
to be A,, where n is the index of the low-order mode near resonance, to within about 
+50%, by viewing the video recordings of the spinning tank. 

From $2 the axial structure of the flow field near the resonance of a low-order 
mode should be sinusoidal with argument k n ( z / h  + i), and hence d(z) will have this 
dependence on z. From the point of view of the camera (a side view in the turntable 
frame), the dyeline should initially appear to tilt, as the fluid particles are displaced 
relative to the tank by its initial tilt-over and by the resulting Coriolis acceleration. 
This tilt should be modified by the free and forced modes of oscillation; when, as in 
the experiments to be described, these modes are dominated by the (l,l ,l) mode, the 
tilt should appear as one-half of a sine wave with a zero at the tank centroid. 

5. Calculations of dyeline displacement based on linear inviscid 
theory 

Linear inviscid calculations were made (summarized in the Appendix to this paper 
and detailed in Manasseh 1991), which permit an accurate prediction of the forced 
response to be made. Precise comparisons of a predicted linear flow field with 
these experiments are not possible, for two reasons. First, the rough nature of the 
estimation of the experimental response, with its associated uncertainty of about 
+50%, precludes a precise comparison and probably befits best a scale comparison, 
which will be given in $6. Secondly, the comparison must be made on the basis of a 
few seconds’ observation - within a few revolutions of the commencement of forcing 
- since the flow appears to irreversibly distort after this time. Despite these caveats, 
a numerical calculation of the dyeline displacement is still useful because it serves to 
highlight both the initial similarities and the later differences that develop between the 
structure of the predicted linear inviscid response and that in the actual experiment. 

The basis of the calculation is an integration of the ordinary differential equations 
(2.11) for the forced fluid velocity, giving the path of a passive tracer particle under 
the influence of inertia wave modes. Several particles are started along the actual 
coordinates of the wire in the tank, and their positions at successive one-revolution 
periods are joined to form a simulation of the dyeline seen in the experiment. 

The time taken for the initial tilt was about 0.1 s. The actual mechanical arrange- 
ment causing the tilt-out was a spring with a pneumatic damper. The damper was 
adjusted so that the motion was just underdamped; it reached the preset 13 without 
any overshoot or jarring. Thus this brief tilting motion is modelled by the first 
quarter-period of a sine function that reaches its peak at 0.1 s. 

The calculation also incorporates some reckoning of the transient response, or 
free-mode ‘ringing’, due to the initial impulse that sets up the forcing. (In inviscid 
theory this ringing continues forever, but since only a tenth or so of the viscous decay 
timescale is being considered, an inviscid model seems appropriate for the free-mode 
response.) The precise value of the initial impulse given in the experiment could not 
be measured and could only be roughly inferred from the calibrations in Manasseh 
(1991). Further details are in the Appendix. 

The predicted dyeline displacement is shown in figure 3. Although the calculation 
and plot are in tank coordinates, the orientation of the wire has been chosen to 
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approximate its instantaneous orientation in the earliest experimental photographs 
reproduced in $6. 

The first 'dyeline' plotted is the locus of particle displacements at the first one-half 
period after the initial tilt; at this time and after successive one-period intervals 
the particles appear close to their maximum projected displacements for the chosen 
orientation, making it easier to discern the axial flow structure. Further details on 
the calculation are in the Appendix. In figure 4, we have 'zoomed-in' on figure 3 to 
make individual pathlines more clear. In these end-view projections only the topmost 
pathline has been plotted. From this viewpoint the particles are moving anticlockwise 
on their orbital paths. The advective drift or 'Stokes drift' can be noted in these 
end-view projections. 

6. Experiments 
Initial trials were conducted with I9 = 1" and near the (1,1,1) mode resonance, 

to study the behaviour of the thymol dyeline. It was generated as part of the 
computer-controlled experimental sequence. These trials determined that nutation 
angles greater than 6' = 1" forced the system with too large an amplitude for the 
dyeline technique to be of much use; the fluid response was sufficient to sweep the 
dye away from the wire before it had a chance to form a dyeline. Furthermore, if the 
forcing frequency was too close to a resonance, dye was swept away from the wire 
even before the experiment could begin, since there was always some small non-zero I9 
because of unavoidable inaccuracies in the equipment. The trials were conducted near 
the resonant frequency of the (1,1,1) mode, co = 2.64298, and established the working 
range, 2.40 < co 5 2.55, of co values near the (1,lJ) mode resonance over which the 
thymol dyeline technique could be used to observe the forced behaviour beyond a few 
revolutions. Presumably, equally good visualizations would have been obtained with 
frequencies equally far above the resonant peak as the lower limit of the working 
range is below it; however it was not practical to operate the apparatus at the very 
highest such speeds. Some experiments were run at co = 2.74 and co = 2.78 but it was 
judged unsafe to conduct a lengthy series of experiments at the corresponding speeds. 

Experiments in this working range were then performed in order to address the 
aims of $1. A series of experiments was conducted at co = 2.46, 2.5, 2.54, 2.74 and 
2.78. The nutation angle was set at 6' = 1". There were four runs at each co with 
identical settings. A more detailed survey of the parameter space near this ( l , l , l)  
mode resonance had been planned. However, it turned out that the richness of the 
phenomena observed for this limited number of points in parameter space meant that 
the observation and description of much more data would have been an overwhelming 
task. 

The dominant feature of all the dyeline experiments is the rapid development 
of structures that cannot be described by the linear inviscid theory of $2. Further 
experiments were conducted near the (3,1,1) and (5,2,1) mode resonances, which it 
is hoped will be presented in a future paper. With the (5,2,1) mode in particular it 
is hard to select any features that seem compatible with a linear inviscid response. 
Nevertheless, at early times after the commencement of forcing near the (1,lJ) mode 
resonance, the time dependence and structure of the dyeline displacement seem to be 
consistent with a linear inviscid description. 

Therefore, estimates were made of the displacement d(z), near the tank ends 
z = &h/2 where d(z) is initially a maximum. This was thought to be characteristic 
of the amplitude of what was postulated to be the (1,1,1) mode under linear inviscid 



356 R. Manasseh 

0.4 0.2 0 -0.2 -0.4 

rsin $ 

rsin @ 

FIGURE 3. Side and end views of the pathlines. The pathlines are relative to container-fixed 
coordinates; however, on the side-view plot, particles have been joined at each revolution to give 
an impression of the dyeline shape when viewed from the turntable, and the plot has been rotated 
to give approximately the same phase of the wire as in the earliest experimental photographs - 
hence the reversed sense of the coordinates. The first dyeline is at t = 0.5 revolutions, to match 
the estimated time of the first photograph, figure 5(a). The actual coordinates of the experimental 
wire have been used; slight departures from symmetry of the pathlines in the top and bottom 
halves of the tank are due to the wire not passing through the tank centroid, owing to experimental 
constraints. 
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FIGURE 4. Expanded view of one of the pathlines looking from the end of the cylinder. The pathline 
shown is the topmost one in figure 3.  As in figure 3, the reversed sense of the coordinates is due 
to the rotation of the plot to give approximately the same phase of the wire as in the earliest 
experimental photographs. 

theory. The estimate was made in the first few revolutions after the commencement 
of forcing, from the experiments recorded at w = 2.46,2.50 and 2.78 . There was 
considerable uncertainty in which time, if any, was the correct one at which to make 
these estimates. After a few revolutions the structure begins to irreversibly distort, 
and during this brief time it is hard to say if there is a steady displacement of the 
dyeline from the wire. Owing to this uncertainty the error in estimating the dyeline 
displacement at this early stage was about f 2  mm, about 50%. Estimates were also 
made from the initial trials at o = 2.6, before the dyeline at this frequency became 
too faint to be discerned. The best visualizations were obtained at o = 2.46. 

The behaviour at o = 2.46 is illustrated by photographs, figure 5(a-h). Here, the 
microcomputer controlling the experiment was programmed to take an exposure every 
revolution, beginning immediately after the impulsive tilt. The uncertainty in the time 
t = 0, caused by human error in simultaneously initiating the tilt and microcomputer 
sequence, is about k0.3 s (k0.5 revolutions). The first photograph was therefore at 
t = 0 & 0.3 s or t = 0 k 0.5 revolutions. The phase of the wire relative to the camera 
at the commencement of forcing is random. 

After the commencement of forcing, the dyeline moves away from the wire, initially 
appearing like a straight line but tilted away from the wire at the tank top and 
bottom. This state is shown in figure 5(a), taken immediately after the commencement 
of forcing at t = 0. (It is probable, given the extent of development of the dyeline 
displacement in this first photograph, that it was taken close to the t = +0.5 revolution 
limit of the error band t = 0 +_ 0.5 revolution.) As noted in $4, the dyeline tilt is due 
to a combination of the displacement of the fluid following the impulse that initiated 
the forcing, the displacement due to the Coriolis acceleration during the time the 
impulsive motion was occurring and the displacements caused by the forced and free 
modes of oscillation and the 'Stokes drift'. 

In the images of figure 5(a-h), the top of the tank and the wire fixed to it have 
been tilted away from the camera (and the bottom towards it). The dyeline is thus 
displaced from the wire towards the camera in the top half of the tank (and away 
from the camera in the bottom half). Since the camera continues to rotate from left 
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(4 (4 
FIGURE 5 (a-d). For caption see facing page. 
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(g )  (h) 
FIGURE 5 (a-h). Dyeline experiment, 8 = lo, w = 2.46. The spinning tank is being viewed from 
the turntable: (a )  was taken at about 0.5 revolutions after the impulsive tilt, the remainder at 
approximately 2 revolution intervals. (The exposures were taken approximately every revolution; 
every second exposure has been reproduced here.) Slight shifts in phase of the wire are due to 
inaccuracies in the timing of the camera’s motor drive. A dark vertical stripe near the tank bottom 
in some photographs is a shadow from a small internal crack in the tank wall. 
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to right relative to the tank, the dyeline always appears to tilt to the left in the top 
half of the tank (and to the right in the bottom half), as suggested schematically 
by figure 2. The net displacement does seem to be one-half of a sine wave with a 
zero at the tank centroid. Moreover, the displacement of the dyeline relative to the 
wire at this stage does not reverse sign (nor show any discernable oscillation) in the 
turntable (camera) frame of reference, since as expected it has the same frequency 
as the forcing. Thus the initial observation is consistent with the linear response 
dominated by the (l,l,l) mode predicted in $4. 

It was at this early stage that the estimates of the amplitude were made, by viewing 
video recordings. The tilted dyeline corresponds to the dyeline particles tracing out 
roughly circular trajectories in tank coordinates, at -a1, opposite to the frequency 
of the tank relative to the turntable, co1, with maxima in the dimensions of the orbits 
near the tank ends. From the video recordings (see the earliest datapoints in figure 6, 
which will be described later), the dimension A ( z )  of these orbits at w = 2.46 is 
about 4 + 2  mm near the tank ends z = fh/2 where the maximum azimuthal and 
radial velocities should occur and do appear to occur initially. From this dimension, 
assumed, from the argument in $4, to be characteristic of the orbit diameter, the fluid 
velocity can be estimated. The orbital path length is about 7c x 4 k 2 mm w 12 f 6 
mm. The velocity of fluid particles is therefore w1 x 12 f 6 mm w 20 f 10 mm s-’. 
This velocity is consistent with the scale assumed under linear behaviour, which gives 
U = q D B  w 16 mm s-l. 

A periodic variation in the displacement of the dyeline from the wire could not be 
confidently discerned. Recall, from $4, that this variation is due to the eccentricity 
of the orbit centres owing to the initial displacement, the beating between the forced 
and free modes and the ‘Stokes drift’. Measurements (shown in figure 6) were made 
from the video images of the dyeline displacement (which is A,, A projected onto the 
imaged plane) at half-revolution intervals. However, the developing instability about 
to be described begins after a few revolutions, precluding any statistical confidence 
in the couple of measurements that may be in the linear inviscid regime. 

In the experiments no systematic change in amplitude was observed, within the 
estimation error of about &50%, at each of o = 2.5, 2.60, w = 2.78 and at o = 2.46. 

In the experiments, the dyeline does not remain approximately fixed in shape as 
predicted by linear inviscid theory and as illustrated by numerical calculations based 
on such theory. Figures 5(b)-5(h) show the later development; they are at 2 revolution 
intervals, with figure 5(b) being at about 2.5 revolutions and figure 5(h) at about 14.5 
revolutions. After about 5 revolutions (3 s in real time), a ‘kink‘ begins to develop 
in the dyeline which, in the course of the next few revolutions, develops into an ‘S’ 
shape, i.e. a function that is odd in z with an axial wavenumber of approximately 
3/2. This ‘kink‘ of the dyeline away from the wire at the tank centreplane is where 
linear inviscid theory predicts the minimum displacement. In addition, this new ‘kink’ 
structure rotates with the tank, and hence is non-oscillatory in tank coordinates. This 
is in contrast to the linear-theoretical response, which should appear approximately 
steady in the turntable (forcing) frame of reference since it is oscillatory in tank 
coordinates. The video recordings clearly show that the new development becomes 
three-dimensional, resembling two half-turns of a corkscrew. By 14.5 revolutions 
(figure 5 h) the upper and lower arms of the dyeline have wound up into spiral forms. 
All the details described above seem to be perfectly repeatable. 

In figure 6 measurements are shown of the displacement of the dyeline from 
the wire, at half-revolution intervals. After about 5 revolutions (3 s) the measured 
displacements on either side of the tank diverge, owing to the enticement of the dye 
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FIGURE 6. Projected displacement A ,  (in mm) of the dye from the wire, measured from the video 
images, for 0 = lo, w = 2.46, as a function of time t (in revolutions). The measurements were made 
relative to the wire near the bottom of the tank (at z = 0.6), hence, in the first few revolutions, the 
dye particles are displaced to the right (positive A,) ,  as shown in figure 2(b). A :  the displacement 
to the furthest discernable limit of the dyeline, when the wire is on the right of the image, and 0: 
on the left. The measurements have not been corrected for optical distortion from the circular tank 
wall or the video screen. 

into the new non-oscillatory ‘kink flow’ that can be observed developing from this 
time. If the motion had remained according to linear inviscid theory, the datapoints 
from the left- and right-hand sides would each have followed a straight line at 
constant A,, modulated by a beating with the free modes and the Stokes drift. 

The velocity of fluid displacement causing the kink is an initial maximum of 
N 4 mm s-l, since it reaches a radius of about r = 0.25 (22 mm) in about 10 
revolutions (6 s). This should be compared with about N 20 mm s-’ for the oscillatory 
modal response. The non-oscillatory motion of the kink does not imply that all 
oscillatory motion in the tank has ceased, rather that a non-oscillatory flow (which is 
able to cause a net transport of dye) has arisen in addition to the oscillatory flow. The 
flow causing the kink appears to arrest after about 10 revolutions, when the more 
complicated ‘winding up’ of the dyeline arms is noted. 

This ‘winding up’ appearance can be traced to striations in the dyelines, first visible 
in figure 5 ( d ) ,  which begin near the centre of the tank. It is in this region where the 
fluid velocities are smallest under linear inviscid theory, being zero at the centroid. 
If an influence from the wire were to generate the striations (by vortex shedding 
for example) this would be expected to be in a region where velocities are more 
substantial. Furthermore, an influence from the wire would be expected to manifest 
itself first where flows are closer to normal to the wire, where the wire presents more 
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of an obstacle. The regions of the tank where flows are close to normal to the wire 
are at the ends of the tank. Again this is away from the centre where the striations 
are first seen. 

The axial nature of the striations, or ‘winding-up’ appearance of the dyelines, is 
noteworthy, as is the spread of these small-scale features throughout the tank. Possibly 
they represent the spread of turbulent eddies as the flow becomes more disordered. 
Eddies in rotating flows would be expected to exhibit a strong axial orientation. The 
‘Type B’ breakdown (Manasseh 1992) that occurs for the parameters of the present 
experiments is characterized in part by small-scale axially oriented features. 

Although the kink is a visually dramatic departure from the linear inviscid descrip- 
tion, it should be remembered that its velocity is at most 20% of the linear response. 
Structures like the kink were not noted by McEwan (1970) and Manasseh (1992). 
This can be ascribed to the nature of the reflective flake visualization technique they 
used. As the spatial gradients in the ‘kink flow’ and the (l,l ,l) mode flow appear 
similar, we can infer that their strain fields, which align the reflective flakes, are in the 
same approximate ratio as their velocity fields, i.e. about 1/5. The kink was probably 
not noted because it corresponds to a weak strain distribution rotating with the tank. 
Any such strain distribution will only be noted as it passes through the sheet of light 
(see Manasseh 1992 for details) illuminating a reflective flake experiment. Unless the 
kink is really a manifestation of a perfectly axisymmetric flow, it should appear as 
a weak flickering of the reflected image, with a frequency equal to the rotation rate 
of the tank relative to the turntable (or to some multiple of it, if the kink structure 
has many radial planes of symmetry). Moreover, as the ‘kink flow’ arrests after about 
10 revolutions, its strain distribution should appear as a weak flickering that persists 
for only about 10 revolutions, perhaps explaining why it was not noted in McEwan 
(1970) or Manasseh (1992). 

Experiments previously conducted in the current working range, with the reflective 
flake visualization technique (Manasseh 1992), had determined that the typical break- 
down expected for 2.40 < o < 2.50 was a long-timescale instability manifesting itself 
in the order of 100 revolutions. For 2.50 < w < 2.55 Type B collapses occur, again in 
the order of 100 revolutions. At o = 2.60 a Type A collapse was noted to occur in the 
order of 50 revolutions. Type A collapses result in the generation of turbulence with 
eddy scales about a tenth of the tank diameter, whereas Type B collapses result in a 
weakly turbulent flow and appear to be preceded by interactions with higher-order 
modes. The dyelines generated at w = 2.46 had dissipated by about 50 revolutions 
after the commencement of forcing, making further visualization impossible; dye- 
lines generated at o = 2.60 had dissipated by about 10 revolutions. Therefore, in 
these dyeline experiments, the dyelines had dissipated before the ‘resonant collapse’ 
instability as identified by the reflective flake technique had manifested itself. 

It was not possible to generate dyelines at later stages during the experimental 
run, because, as noted in $3.2, a period of about 60 seconds without any flow was 
needed to generate a dyeline. Had the current been switched on when flow was being 
forced, dye would have been swept away from the wire too rapidly for a dyeline to 
be formed. 

The repeatablilty of the kink formation raises the possibility that it is wholly or in 
part associated with some geometric feature of the tank, the forcing regime or with a 
systematic fault in the experiment. It was in part to address this concern that further 
experiments were done with higher modes, to see if the kink still occurs at other 
forcing frequencies. It does not; for the (3,1,1) mode, for example, equal departures 
from the linear inviscid prediction begin at three points, corresponding exactly to the 
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intersection of the axis with the three 'nodal planes' where velocities normal to the 
axis are identically zero according to the linear theory for the (3,1,1) mode. (In fact, 
the (l,l,l)-mode kink occurs at the single nodal plane of the (1,1,1) mode.) More 
complex structures occur for still higher modes, without the presence of a clear kink 
as with the (1JJ) mode. As with the (l,l,l)-mode results, these observations are 
easily repeatable. 

The fact that quite different anomalies arise at different forcing frequencies (with 
the tank geometry and the amplitude and structure of the forcing function identical) 
suggests that the kink does not arise from a geometric flaw or some fault in the 
experimental procedure. It is hoped that experiments with other modes will be 
reported in a future paper. 

7. Discussion and conclusion 
The primary aim of this series of experiments was to examine the dyeline pattern 

before a breakdown had occurred and to see if it is consistent with the predictions of 
linear inviscid theory. It is, albeit for only a few revolutions; a measure characteristic 
of the flow amplitude has the correct scale and the time dependence is oscillatory in 
tank coordinates as expected. However, a 'kink' soon develops in the linear inviscid 
dyeline structure. It is a manifestation of a flow that is not oscillatory and has a 
velocity about 1/5 of the estimated linear component of the response. 

It is conceivable that the kink in the dyeline originates in the viscous terms 
neglected in the simple analysis of $27 either in an Ekman or Stewartson layer effect 
or even in some interaction with the visualization wire itself. Also, discontinuities on 
characteristic surfaces are predicted in contained rotating fluids (Wood 1966) which 
may have a physical realization as extensions of the viscous boundary layers into 
the interior. If viscous forces are at work, we expect the flows they represent to 
be of O ( E 4 )  times the first-order inviscid amplitude. This is about 3 x lop3 times 
the first-order inviscid amplitude. For the experiment in $6 a measure characteristic 
of this amplitude was estimated to be about 20 mm SKI, giving viscous flows of 
order lo-* mm s-'. However, the flow that produced the kink in figure 5 ( e )  had a 
magnitude of order 1 mm s-'. This is one and a half to two orders of magnitude 
larger than a viscous mechanism would predict. There are not enough precise data 
to rule out a viscous mechanism for producing the kink, but on the basis of its order 
of magnitude that seems an improbable cause. 

A secondary aim was to determine if a large mean flow (corresponding, say, to a 
circulation of order 0.1 times the basic spin COI as suggested by Gunn & Aldridge 
1990) was present. However, even the small mean flow calculated by Thompson 
(1970) was not observed. This is now to be expected as it is O ( 0 )  times the first-order 
forced response amplitude, and since a measure characteristic of this amplitude is 
about 20 mm s-l, the second-order mean flow should be about 0.2 mm s-'. Thus over 
the 5 revolutions or so before the kink appeared, about 3 s in real time, the dyeline 
would only have moved about 0.6 mm, a distance too small to be clearly distinguished 
from the flow due to the first-order forced response. It was not possible to generate 
a first-order forced response sufficiently large for a noticeable second-order flow to 
develop. 

In conclusion, the use of the dyeline technique has suggested that linear inviscid 
theory for contained inertia waves has some validity, for a very brief period following 
the commencement of forcing, both in its prediction of the scale of flow velocity 
and of the flow's oscillatory time dependence. However the experiments have also 
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revealed the formation of a structure not explained by linear theory, which develops 
before the collapses detailed in Manasseh (1992), indeed within a few revolutions of 
the commencement of forcing. 

A mean circulation could be invoked to explain this or other breakdown phenom- 
ena. However, some mechanism is needed to explain how a mean circulation can 
interact with the inertia wave modes, and grow larger than the second-order level 
permitted by formal asymptotic theory (Thompson 1970). 

Further experiments were carried out to test ideas that the ‘kink‘ originated in a 
weakly nonlinear interaction with a mode that cannot be forced under linear theory. 
It is hoped that these, along with the results of experiments near the resonances of 
higher-order modes and further discussion and speculation on the nature of these 
instabilities will be presented in future papers. 

I did this work while a PhD student in the Department of Applied Mathematics 
and Theoretical Physics, University of Cambridge. I owe thanks to my supervisor, 
Dr Paul Linden, as well as to my colleagues, in particular Drs David Tan, Michael 
McIntyre and John Jackson, for many helpful discussions. This work was done as 
part of a project funded by the British National Space Centre / Royal Aerospace 
Establishment and managed by British Aerospace PLC. I should like to acknowledge 
the support of those organizations. Some of the final numerical calculations needed 
for figure 3 were done on a Sequent Symmetry S27 computer at the School of 
Mathematics of the University of New South Wales. 

Appendix. Calculations of the dyeline displacement 
A.l. Forced response calculation 

First, it is shown how the linear steady-state velocity field resulting from an applied, 
single-frequency forcing can be estimated by summing a series of inertia wave modes, 
with their amplitudes calculated by a ‘mode projection’ approach. A mode projection 
approach to calculating the amplitudes of forced inertial oscillations in a cylinder was 
first described in the unpublished thesis of Kudlick (1966), though numerical calcula- 
tions based on it were not required for comparisons with experiment. This approach 
can be contrasted with the ‘inhomogeneous boundary condition’ method, which ex- 
presses the disturbance pressure as a Fourier series in z ,  from which the velocity 
field can be derived. It is detailed in Tan (1991). In the mode projection approach, 
the projection of the applied force field onto a particular mode is calculated. Each 
of these modes individually satisfies the homogeneous boundary conditions. Then 
the responses or projections of all possible modes, when appropriately recombined, 
should reproduce the force field. Although mathematically standard and straightfor- 
ward, as detailed in Manasseh (1991), neither approach, when realized numerically, is 
without its pitfalls; the difficulties may be related to the ill-posedness of the original 
problem defined by (2.2) and (2.3). 

Secondly, the free mode response is estimated, based on the measurements of the 
initial impulse in Manasseh (1991), and the velocity field is integrated to determine a 
number of particle paths. 

To begin a calculation based on the mode projection approach, first establish some 
identities by considering once more the homogeneous form of (2.2), 

au A 

- + ok x u +  vp = 0, 
at 
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with incompressibility and the homogeneous boundary condition u - ft = 0, where ft 
is the outward unit vector normal to the surface. For special values of o, say con, 
(A 1) is satisfied with a single mode of the form 

u = Re ( Un(r, 4, z )  eit) , 

P 1 Re (Qn(r, 4 , ~ )  eit) 9 

iu, + oniz x U, + VQ,, = 0. 

iun, * G2 + mn,(k x un,) * q, + VQn, * q2 = 0, 

- iUn, - G2 + mn2un1 * (iz x G2) + Un, * V Q ~ ; ,  = 0, 

(A 2) 

(A 3) 
where n corresponds to a combination of spatial wavenumbers that is unique to each 
mode. Then (A 1) becomes 

(A 4) 

Following Greenspan (1968) we can arrange the following expressions from (A 4), 
where n1 and 112 represent different modes: 

(A 5 )  

(A 6) 
where -/- denotes complex conjugation. Now consider the integrals of (A 5 )  and (A 6) 
over the container volume. First note that 

V(Qn1 * q,) = VQn, * u;Fn2, 
because of the incompressibility condition. Then 

by Gauss's theorem, where Y is the container volume and Y is its surface. Then, 
because of the boundary condition, 

(A 9) 

As 

un, - (iz x q,) = -(iz x Unl)  - Q,, (A 10) 
integrating (A 5 )  and (A 6) over the volume and adding them gives 

( a n 1  - o n , )  /'(i x un, 1 * f12 d - ~ -  = 0, 

J'(i x un,) * cZ d~ = 0, n1# n2, 

JJUq * q2 d - ~ -  = 0, n l +  n2, 

(A111 
Y 

so that 

(A 12) 
v 

and therefore, from the integral of (A5) and from (A9), 

(A 13) 

i.e. the functions U,, must be orthogonal. Now define the inner product operation as 

(X,Un) = 1 X *  d Y ,  (A 14) 
Y 

where X is any complex vector function of r,q5 and z .  Applying this operation to 
(A4) gives 

i(un, un) + W n ( i  x u,, un) = 0, (A 15) 
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because of (A9), (A 12) and (A 13). Hence 

(k  x Un, Ufi) . 1 
-1-. - - 

(Un, Un) a n  

Now consider the inhomogeneous problem 

au 
at 
- + w k x u + V p = R e  ( F  

U,, = i- [ dJm(2'nr) + cos [ k n ( z / h  + i)] eln1$, (A 24) 

where w is prescribed and does not coincide with 
incompressibility and boundary conditions. Assume a 

any of the w,, together with 
solution to (A 17) of the form 

/ m  \ 

which upon substitution into (A 17) gives 

if oc 

n= 1 n=l  

which, noting from (A4) that k x U, = -(i/wn)Un - (l/wn)VQn, becomes 

u m 

C i(1 - m/wn)AnUn + C ( B n  - w/OnAn)Qn = F .  
n = l  n = l  

Now applying the inner product operation gives 

( F ,  Un)/(Un, Un) A,  = 
i( 1 - w/w,) ' 

using (A9) to eliminate the pressure term. Thus, if the U,, are a complete set and the 
A,  are calculated according to (A22), from (A21) the B, are given by 

w 
B n -  - - -An.  

u n  

Referring to $2, recall that the spatial structure U, of a mode is given by (2.11) : 

1 - w,,2 dr 

(A 26) 
k z  
h 

W, = -i-J,,42Anr) sin [ k n ( z / h  + i)] elm4. 

The forcing term F from the right-hand side of the inhomogeneous equation for 
precessional forcing (2.2) is -(w - 2)r el". To calculate ( F ,  U,,), therefore, it is 
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necessary to evaluate the integral 

( F ,  U,) = / -(w - 2)r ei4W: d-Y- 
9- 

367 

(2 - w)r ei4i(kn/h)Jm(21,r) sin [kn(z/h + i)] ePim4r dr d 4  dz (A28) 

=J, 1 

= i4.n(2 - w )  /'r2J1(2J.~r) dr, rn = 1 and k odd 
J o  

= 0, m + 1 or k even. 

x cos2 [kn(z/h + i)] r dr d 4  dz (A 31) 

where 

where 

l 2  dJm(2Anr) 1 
L V n V i r  dr d 4  dz = (1 - s, dr r 

+ rn--Jm(2Anr) 

x cos2 [kn(z/h + i)] r dr d 4  dz (A 34) 

and 

LW,W:r  dr d 4  dz = (F) J, [Jm(2A,r)I2 sin2 [kn(z/h + i)] r dr d 4  dz (A37) 

by using the standard properties of Bessel functions. On adding (A32), (A35) and 
(A 38), 
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and so, from (A 21), (A 29) and (A 39), the amplitude of the nth mode is given by 

A, = .rd , m = 1 and k odd 
4(2 - 0) r2J1(21,r) dr 

(1 - o / U n ) h  [1/(1- o:>2(ru + 10) + (kn/h12 [J~(A~)I~] 

= 0, m # 1 and k even. (A 40) 

From (A26), the velocity u = Re C:'l(AnU, eit) is given by 

cos [ k n ( z / h  + i)] sin(+ + t )  
r 

1 m ' = x A n { - 7  n= 1 1 - 0, [ 

(A411 
krc 
-J1(21,r) sin [ k n ( z / h  + i)] sin(4 + t )  
h 

and the pressure by 

A.2. Calculating the fluid particle pathlines 
Here we consider the determination of the fluid particle pathlines corresponding to a 
sum of linear inviscid modes. These modes comprise some of the forced modes, and 
the free mode with the largest amplitude. 

Given the linear inviscid solution, the problem of calculating the fluid pathlines is 
twofold; firstly, the integrals giving A ,  in (A40) must be calculated, and secondly, 
we must solve the three nonlinearly coupled ordinary differential equations (A 26) 
for r ( t ) ,4 ( t )  and z( t ) .  Numerical Algorithms Group (NAG) routines were used 
throughout, coded in double-precision FORTRAN and run on the Cambridge IBM 
3084. 

The integrals in the term A,  were calculated with a third-order finite-difference 
scheme. The solution of (A 26) was done numerically with an adjustable-stepsize 
Runge-Kutta routine. The paths were calculated for dye particles released as passive 
tracers at a succession of points along a hypothetical wire. 

The actual motion during the tilt-out is modelled by making the nutation angle 
8 a function of time for the 0.1 s taken by the tilting motion. As noted in $5, the 
mechanical origin of the tilting motion leads this displacement to be modelled as the 
first quarter-period of a sine function that reaches its peak at 0.1 s. 

Fourteen forced modes are included in the calculation; they are tabulated in table 2. 
It was found that for the parameters of the experiments reported here, the (l , l , l)  
mode, which was being forced near resonance, so dominated the response that it 
accounted for 90-95% of the velocity field. 

It was decided that one free mode, the (l , l , l)  mode, should be included since 
its structure best represents the initial tilt disturbance applied to the system. The 
free mode's response was only estimated, rather than calculated by mode projection 
integrals as in SA.1, since the actual velocities during the impulsive tilt were unknown, 
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k 1 Wkii 
1 1 2.64298 

1 2 5.27757 

1 3 7.93762 
3 1 1.22370 
3 2 1.89134 

1 1 -4.05609 

1 2 -6.73255 

l k l l  k 1 
2.88223 3 3 
4.63098 5 1 
6.10482 5 2 
7.84364 5 3 
9.27674 7 1 
2.49273 7 2 
5.67388 7 3 

Wkll 

2.69398 
1.08229 
1.37830 
1.78975 
1.04224 
1.20585 
1.45410 

a k l l  

8.84105 
2.43832 
5.58728 
8.74335 
2.42220 
5.55698 
8.70569 

TABLE 2. Modes used in the forced response calculation 

rendering further precision in this part of the calculation unproductive. Therefore, the 
free mode response was estimated by assuming that the 'impulsive' velocity initially 
imparted to the fluid during the tilt-out later gets represented by a freely oscillating 
(1,lJ) mode. The impulsive velocity (in tank coordinates) due to the tilt was estimated, 
together with the velocity due to the Coriolis force acting over this period, from the 
calibrations in Manasseh (1991). This estimate was made near the tank ends (where 
it is a maximum) and matched by a freely oscillating (l , l , l)  mode with appropriate 
amplitude and phase to account for the estimated velocity at the ends. 

At time t = 0 the particles are located on a hypothetical wire at r = 0.25, 4 = 3n/2 
and parallel to the z-axis. The integrations were performed to a non-dimensional 
time of 5 revolutions. The timelines corresponding to the loci of the positions of a 
succession of particles were also calculated. A line has been plotted at t = 0 to mark 
the wire. Timelines have been plotted at t = n, and at each revolution thereafter, on 
the ( r , z )  projection shown in figure 3. 

Further details on the calculation and cross-checks against other methods are in 
Manasseh (1991). 
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